# ENDEMIC STABILITY FOR TICK-BORNE DISEASES

J.A.Lawrence



#### **ENDEMIC STABILITY**

 Endemic stability is defined as the state where the relationship between cattle, parasites, vectors and environment is such that clinical disease occurs rarely or inapparently, and without measurable economic losses.

#### ENDEMIC STABILITY IN ZIMBABWE

- Endemic stability was the normal situation in Zimbabwe until 1890. In 1891 the first outbreak of redwater was reported in trek oxen from South Africa.
- Importation of Asian redwater from Mozambique in 1900 followed by East Coast fever from Tanzania, and the dipping campaigns that followed, destroyed the possibility of a return to stability.

#### COMPONENTS OF ENDEMIC STABILITY

- Tick resistance
  - Immunity resulting from prior exposure
- Disease tolerance
  - Innate tolerance
    - Genetic
    - Age related
  - Acquired tolerance
    - Immunity resulting from prior exposure or immunisation

## DEFINITIONS

#### Resistance

• "Disease resistance implies that the host has a negative impact on the fitness of the pathogen, causing its death. Thus, resistance describes the host's ability to limit pathogen load."

### DEFINITIONS

#### Tolerance

• "Disease tolerance is related to the impact of a given level of infection on the animal's performance, namely, the reduction in performance in the presence of a pathogen load. Disease tolerance is different from resistance because it promotes host health while having a neutral to positive effect on pathogen fitness."

## TOLERANCE

- Tick-borne Disease Tolerance
  - Pathogen establishes successfully, but the inflammatory response limits damage to ox tissues and systems without eliminating pathogen.
  - Immediate innate immunity
  - Delayed adaptive immunity

#### **RESPONSES TO INFECTION**

- Immunological activation of antibodies and immune cells to neutralise and/or destroy pathogens or abnormal cells
- Inflammatory changes in blood flow, tissue fluids and production and movement of white blood cells to facilitate the process and remove pathogens and damaged tissue

## **IMMUNE RESPONSE**

#### • Innate –

- Present at birth and for a variable time thereafter
- Reacts to the presence of abnormal structures (e.g. bacteria) and damaged cells (e.g. cells containing viruses and other intracellular pathogens)
- Non-specific
- Limited number of triggers

## **IMMUNE RESPONSE**

- Adaptive
  - In cattle becomes active after one month of age
  - Requires two to four weeks to become effective
  - Highly specific
  - Develops against an almost infinite number of antigens

## **DISEASE TOLERANCE**

- Mild or subclinical disease, self-limiting
- Controlled, appropriate inflammatory response.
- Pathogen persists in carrier status

#### **DISEASE SUSCEPTIBILITY**

- Severe or fatal illness
- Disorderly, inappropriate, excessive inflammatory response

#### **GENETICS AND TOLERANCE**

- Common knowledge that indigenous cattle in an environment in which tickborne diseases are prevalent are rarely clinically affected.
- Indicine (Zebu) more tolerant than
- Indicine crossbreds with African taurine (Sanga) and European taurine (synthetic breeds) – more tolerant than
- European taurine
- Significant within breed variation

#### GENETIC FACTORS BABESIOSIS

- Genetic tolerance to *Babesia bovis* has been demonstrated.
- No statistical evidence of tolerance to *B. bigemina*, but field experience confirms that it does exist.

#### GENETIC FACTORS ANAPLASMOSIS

- Genetic tolerance to *Anaplasma* not a factor.
- Endemic stability in field attributed to tick resistance, leading to low infection rates in ticks and low tick numbers.
- Transplacental transmission and colostral antibodies may help to establish tolerance.

#### GENETIC FACTORS HEARTWATER

- No statistical evidence
- Indicine generally more tolerant than taurine
- No consensus on the status of Sanga cattle

#### GENETIC FACTORS THEILERIOSIS

 Genetic tolerance to East Coast fever and tropical theileriosis demonstrated in indicine breeds.

#### GENETIC FACTORS ANAPLASMOSIS & BABESIOSIS 1997 – PEN TRIAL

| Breed           | Number | B. bovis | B. bigemina | Anaplasma |
|-----------------|--------|----------|-------------|-----------|
|                 |        | Treated  |             |           |
| Bos indicus     | 10     | 0        | 0           | 5         |
| Bos indicus 50% | 20     | 5        | 0           | 15        |
| Bos taurus      | 10     | 8        | 0           | 10        |
|                 |        |          |             |           |
|                 |        |          |             |           |
|                 |        |          |             |           |

#### GENETIC FACTORS BABESIOSIS 1999

| Breed                              | Number      | Anaemia                  | Severe Illness |
|------------------------------------|-------------|--------------------------|----------------|
|                                    | Babesia b   | ovis – Field trial       |                |
| Bos indicus                        | 56          | 20                       | 1              |
| Bos indicus 50%                    | 52          | 39                       | 10 (1 died)    |
| Sar                                | urus        |                          |                |
|                                    | Babesia big | <i>emina –</i> Pen trial |                |
| <i>Bos indicus</i><br>100% and 50% | 12          |                          | 0              |
| Bos taurus                         | 7           |                          | 6              |

#### GENETIC FACTORS EAST COAST FEVER 2005 – PEN TRIAL

| Breed          | Number | Clinical Disease | Death |
|----------------|--------|------------------|-------|
| Trial 1        |        |                  |       |
| Shorthorn Zebu | 5      | 2                | 0     |
| Boran          | 9      | 5                | 2     |
| Friesian       | 8      | 8                | 3     |
| Trial 2        |        |                  |       |
| Shorthorn Zebu | 10     | 6                | 0     |
| Boran          | 20     | 18               | 7     |
| Friesian       | 10     | 9                | 4     |

#### WITHIN BREED VARIATION BORAN - CORRIDOR DISEASE FIELD TRIALS - 2013-2018

- International Livestock Research Institute
- Kapiti Research Station, Kenya
- Vaccination trials 2013
- 4/6 survivors were offspring of one bull
- Exposed offspring to Corridor disease on Ol Pejeta Ranch for four years
  - First generation 2014-15
  - Offspring from males from first generation 2017-18

### WITHIN BREED VARIATION BORAN - CORRIDOR DISEASE FIELD TRIALS - 2013-2018

| Sire              | Number | Survived without<br>treatment |  |
|-------------------|--------|-------------------------------|--|
| First Generation  |        |                               |  |
| 3167              | 28     | 19 (67.9%)                    |  |
| Other             | 29     | 1                             |  |
| Second Generation |        |                               |  |
| 3167              | 47     | 24 (51.1%)                    |  |
| Other             | 13     | 3                             |  |
|                   |        |                               |  |

#### WITHIN BREED VARIATION SHORTHORN ZEBU

- East African Shorthorn Zebu from endemic and non-endemic areas compared after challenge with East Coast fever.
- Endemic areas 100% survival
- Non-endemic areas 60-70% survival

### WITHIN BREED VARIATION SHORTHORN ZEBU NATURAL EXPOSURE – 2007-2009

| FAF1B                            | Death | Illness |  |  |
|----------------------------------|-------|---------|--|--|
| 32 Deaths in 548 calves          |       |         |  |  |
| T/T                              | 0     |         |  |  |
| C/T                              | 16    |         |  |  |
| C/C                              | 16    |         |  |  |
| Clinical Illness in 98 Survivors |       |         |  |  |
| T/T                              |       | 2       |  |  |
| C/T                              |       | 8       |  |  |
| C/C                              |       | 21      |  |  |

## **INVERSE AGE TOLERANCE**

- Young calves are generally less likely to develop clinical tick-borne disease than adults
- Suggested reasons
  - Physiological differences developing with age
  - Innate non-specific immunity
  - Maternal specific immunity
  - Congenital infection

#### CALFHOOD TOLERANCE BABESIOSIS

- Calves under 6 months old tend to be tolerant, irrespective of the immune status of their dams.
- Maternal immunity may enhance tolerance
- Tolerance attributed to an earlier, better coordinated inflammatory response than adults.

#### CALFHOOD TOLERANCE ANAPLASMOSIS

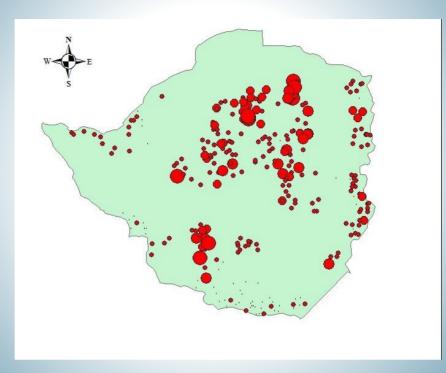
- Calves under 6 months old tend to be tolerant, irrespective of the immune status of their dams.
- Maternal immunity may enhance tolerance
- Transplacental infection can occur in 10-15% of calves and may play a role

#### CALFHOOD TOLERANCE HEARTWATER

- Calves under 4 weeks old tend to be tolerant, irrespective of the immune status of their dams
- Tolerance may extend to 6-8 months
- Congenital infection can occur and may play a role

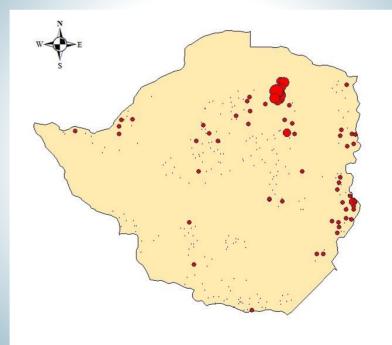
#### CALFHOOD TOLERANCE THEILERIOSIS

 No evidence of calfhood tolerance, except to January disease. In January disease calves under 4 weeks old tend to be tolerant, irrespective of the immune status of their dams. In the field, mortality is rare under 7 months, but the reasons are unknown.


## **ACQUIRED TOLERANCE**

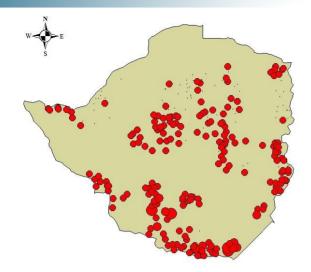
- Adequate exposure to infected ticks "strategic dipping"
- Treatment of cattle with acaricides to limit damage by ticks while maintaining their immunity against tick-borne disease.
- How many ticks is enough to ensure adequate transmission?
- How many ticks is so many that they cause significant weight loss and skin damage?

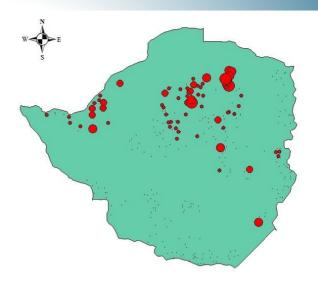
## ACQUIRED TOLERANCE


- How many ticks is enough to ensure adequate transmission?
- Enough to infect 100% of calves by weaning.
  - Babesiosis and anaplasmosis >75% seropositive at weaning
  - Serology not satisfactory for heartwater and theileriosis. Can use molecular techniques to detect circulating parasites
  - Can estimate from infection rates in ticks and tick loads

#### **Rhipicephalus decoloratus**

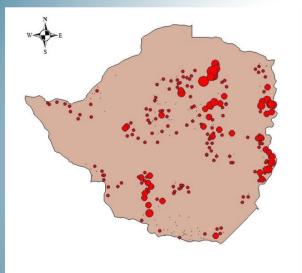



Transmits *Babesia bigemina* and anaplasmosis Covers most of the country except hot, arid areas


#### **Rhipicephalus microplus**



Transmits *Babesia bigemina, B. bovis* and anaplasmosis Prefers warm, humid conditions - "ecological niches"


#### **Amblyomma Species**





A. hebraeum A. variegatum Transmit heartwater. Between them they cover most of the country

#### **Rhipicephalus Species**



W S

R. appendiculatus

R. zambeziensis

Transmit *Theileria parva*. Prefer wooded areas. Between them they cover most of the country

## **ACQUIRED TOLERANCE**

- Immunisation
- Methods available for all tick-borne diseases in Zimbabwe involve infection with live organisms and treatment where necessary
  - Expensive to produce
  - Require ultra-low cold chains to maintain
  - Immunogenicity against different strains varies in heartwater and theileriosis
  - Availability variable

#### ENDEMIC STABILITY IN PRACTICE

- Is it necessary?
- Is it achievable?
- Is it desirable?

#### ENDEMIC STABILITY NECESSITY

- Alternatives
  - Keep cattle tick free by intensive dipping or zero grazing
  - Maintain endemic stability and practise strategic dipping

### ENDEMIC STABILITY POSSIBILITY

- Can you keep your cattle tick free?
  - Do you have suitable dipping/spraying facilities?
  - Do you have reliable access to effective acaricides?
  - Do you have a closed herd?
  - Do you have secure boundaries?
- If not
  - Do you have cattle with zebu ancestry?
  - Do you have sufficient exposure to infected ticks?
  - If not, can you immunise your cattle against all tick-borne diseases?

#### NATURAL ENDEMIC STABILITY POSSIBILITY

- Babesia bigemina easy in practice
- Anaplasmosis easy in practice
- Babesia bovis unlikely in Zimbabwe
- Heartwater easy in practice, but a problem with variability of cross-immunity between strains
- Theileriosis
  - Epidemic theileriosis impossible without genetically tolerant cattle. Even then, calf deaths may occur
  - Corridor disease does occur
  - January disease probably achievable

### ENDEMIC STABILITY DESIRABILITY

- Advantages
  - Reduced cost of acaricides
  - Reduced stress on cattle
  - Reduced disruption of farming activities
  - Reduced requirement for supervision
- Disadvantages
  - Occasional deaths from tick-borne disease
  - Production losses from high tick burdens
  - Cattle are carriers of infection
    - *B. bovis*, heartwater strains, theileriosis?

#### THE ALTERNATIVE SOLUTION

- A hybrid strategy
- Do not dip calves until weaning, unless they have problems before that, e.g. theileriosis, heartwater
- Dip adults as frequently as necessary to control disease
- Do not breed from animals that require treatment for tick-borne disease
- Naturally acquired immunity and genetically controlled tolerance will build up in the herd, while losses in non-immune cattle will be minimised

